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Abstract

This paper studies the impact of Time-Of-Use (TOU) tariffs
in a competitive electricity market place. Specifically, it fo-
cuses on the question of how should an autonomous broker
agent optimize TOU tariffs in a competitive retail market, and
what is the impact of such tariffs on the economy. We for-
malize the problem of TOU tariff optimization and propose
an algorithm for approximating its solution. We extensively
experiment with our algorithm in a large-scale, detailed elec-
tricity retail markets simulation of the Power Trading Agent
Competition (Power TAC) and: 1) find that our algorithm re-
sults in 15% peak-demand reduction, 2) find that its peak-
flattening results in greater profit and/or profit-share for the
broker and allows it to win against the 1st and 2nd place bro-
kers from the Power TAC 2014 finals, and 3) analyze several
economic implications of using TOU tariffs in competitive
retail markets.

1 Introduction

The smart electricity grid, known as the the smart-grid, is
expected to be a main enabler of sustainable, clean, effi-
cient energy supply. One of the milestones in the smart-grid
vision is “customer participation in power markets through
demand-side-management” (U.S 2003). Demand-side man-
agement refers to adapting customer demand to supply con-
ditions, and may be implemented using new power mar-
ket structures. Due to the high cost of failure in the real
world (Borenstein 2002), it is important to test new power
market structures in simulation (Weidlich and Veit 2008).
This is the focus of the Power Trading Agent Competition
(Power TAC) (Ketter, Peters, and Collins 2013), and of this
paper.

In Power TAC, autonomous broker agents compete to
make profit in a large-scale, realistic power markets simu-
lator. Since wholesale power markets are not designed for
individual customer participation (Kirschen 2003), such bro-
kers can represent customer populations, and make profit
while reducing customer costs and stabilizing the electricity
grid (Ketter, Peters, and Collins 2013). Power TAC’s simu-
lator models real-world markets (like ERCOT’s) with com-
ponents of future markets, such as autonomous agents opti-
mizing customer consumption.
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One of the primary goals of demand-side manage-
ment (DSM) is peak-flattening, i.e. distributing consump-
tion more evenly throughout the day (Schweppe, Darya-
nian, and Tabors 1989). Time-Of-Use (TOU) tariffs are en-
ergy selling contracts that were proposed for implementing
DSM (Joskow and Tirole 2006; Kirschen 2003). TOU tariffs
specify time-based pricing, in contrast to fixed-rate contracts
that currently dominate power markets, and thus incentivize
customers to adapt their consumption to reduce costs.

TOU tariffs in competitive markets present at least three
important challenges. First, in monopolistic retail markets
the surplus resulting from reduced wholesale energy costs
directly benefits the monopoly and possibly the customers.
In contrast, in competitive markets some or all of this sur-
plus might benefit the competitors (even if they do not use
TOU tariffs), since wholesale energy costs are typically a
function of the total amount bought, due to the wholesale
auction structure. As a result, brokers using fixed-rate tariffs
can enjoy the reduced prices resulting from peak-flattening
by another broker using TOU tariffs, while at the same time
gaining market share from this TOU broker due to the ex-
tra discomfort that TOU tariffs incur on customers. Second,
TOU tariffs may cause a herding phenomenon, where cus-
tomers shift their consumption to low-price times, thus cre-
ating new peaks (Ramchurn et al. 2011). The third challenge
is addressing the aforementioned challenges of flattening de-
mand and increasing the broker’s surplus in a tractable way
in a complex, realistic, real-time environment.

This paper focuses on two questions. First, how should
an autonomous broker optimize TOU tariffs that are both 1)
attractive to customers in a competitive retail market with
fixed-rate tariffs and 2) more profitable for the broker than
the best fixed-rate tariffs? Second, what is the economic im-
pact of TOU tariffs in a competitive market? This paper’s
primary contributions are:

• We formalize the problem of optimizing TOU tariffs in
competitive markets, show that it is intractable, and pro-
pose an efficient optimization algorithm that approxi-
mates its solution. Our algorithm is fully implemented in
our broker agent.

• Our algorithm leads to 15% peak-demand reduction in
a complex, large-scale simulation of competitive power
markets (Power TAC). To the best of our knowledge, our
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Figure 1: High-level structure of the Power TAC simulation

work is the first to show that TOU can achieve the primary
goal of peak-flattening in competitive markets in such a
large-scale, realistic simulation.

• Our agent’s peak-flattening results in greater profit and/or
profit-share and allows it to beat fixed-rate brokers,
specifically the 1st and 2nd place agents from the 2014
Power TAC finals, while reducing the energy costs of
both its customers and its competitors’ customers.

• Using extensive experimentation, we analyze several eco-
nomic implications of using TOU in competitive re-
tail markets. For instance, while TOU tariffs can induce
customer-herding, our TOU broker prevented it by im-
plicitly coordinating flattening through profit-maximizing
tariffs. This underlines a potential benefit of employing
autonomous TOU brokers in competitive power markets.

2 Testbed Domain: Power TAC

Our testbed domain is the Power Trading Agent Compe-
tition (Power TAC) simulation environment. Power TAC
is an annual competition in which the competitors are au-
tonomous brokers programmed by participants from around
the world. Participants release their broker binaries after the
competition, and this allows for running controlled experi-
ments against state-of-the-art brokers. Power TAC models
competitive retail and wholesale power markets in a smart-
grid environment of a medium-sized city, with more than
50,000 simulated customers. Power TAC’s customers are
autonomous agents that optimize the electricity-costs and
comfort of their human-owners (Reddy and Veloso 2012).
The simulator simulates 60 days in discrete, one-hour time-
slots. One simulation takes about two hours to complete.

Figure 1 shows the structure of the Power TAC simula-
tion environment. At a high level, autonomous broker agents
compete with each other by acting in three markets: (1)
a wholesale market, in which energy is traded with tradi-
tional generation companies, (2) a tariff market, which is
a retail market in which energy is traded with consumers
and distributed renewable energy producers, and (3) a bal-
ancing market, which serves to ensure that supply and de-
mand are balanced at all times. More specifically, local cus-
tomers such as office buildings, residential houses, and so-

Figure 2: Generation-cost curves of three wholesale mar-
kets: ERCOT, PJM, CAISO. Source: (Newell et al. 2012)

lar farms consume/produce energy according to real-world
patterns, based on weather conditions and calendar factors
such as day/hour. Power TAC uses state-of-the-art customer
models, which consume/produce using time-series genera-
tors based on real-world data. Customers are equipped with
smart-meters, which report consumption and production ev-
ery hour. Autonomous brokers compete on gaining market
share and maximizing profit by trading electricity. Brokers
interact with local consumers and producers in the tariff
market by publishing tariff contracts for energy consump-
tion/production, which may include fixed and varying prices
and possibly bonuses and/or fees. Customers subscribe to
tariffs they find attractive. Brokers typically balance their
portfolio’s supply/demand by trading in the wholesale mar-
ket. Full details can be found in The Power TAC Game Spec-
ification (Ketter et al. 2015).

3 Background - TOU Tariffs

A main motivator for demand-side management (DSM) is
the variability in energy production prices. Figure 2 shows
energy generation cost as a function of generated power in
three large competitive wholesale power markets. The fig-
ure demonstrates how increased generation results in more
sharply increasing costs. Typical daily customer demand has
peaks, which thus result in high generation costs. One of the
main goals of DSM is reducing these peaks by flattening
customer demand throughout the day. This can reduce both
generation costs, infrastructure costs, and CO2 emissions.

One of the main methods proposed for implementing
DSM is TOU tariffs, which specify different prices for dif-
ferent times of day. Here we define a TOU tariff τ to be
a tuple τ := 〈p0, p1, · · · , p23〉, where pt is the energy
price in cents/kWh during hour-of-day t. We refer to pt
as hourly rate. A TOU tariff with varying hourly rates in-
centivizes customers to adapt their consumption away from
times of peak demand in order to reduce their energy costs.
In Power TAC (Reddy and Veloso 2012) as in real-world
markets (Albadi and El-Saadany 2008), when a tariff is pub-
lished to the market, customers respond in 3 ways. The first
two responses take place for any (fixed-rate or non-fixed-
rate) tariff publication, while the third one takes place for
non-fixed-rate tariffs, such as TOU, as follows:
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1. subscription changes: a portion of the customer popula-
tion may change their tariff subscriptions.

2. consumption elasticity: customers elastically adapt their
total consumption based on prices.

3. consumption shifting: customers may shift consumption
from expensive to cheap hours.
In competitive retail markets, TOU tariffs may need to

compete with fixed-rate tariffs, which sell energy for a fixed
price per unit. Fixed-rate tariffs do not affect customers’
comfort, since customer payments are determined solely by
the total energy consumed, regardless of when it is con-
sumed. In contrast, under TOU tariffs customers face a
trade-off between cost and comfort: to save costs, they may
need to change their consumption patterns. Customers will
subscribe to a TOU tariff and change consumption if the po-
tential cost saving compared with competing fixed-rate tar-
iffs is large enough to compensate for the extra discomfort.

Power TAC models this trade-off as follows (Reddy and
Veloso 2012). A customer has a default energy profile eH ,
which is a vector of desired consumption values up to some
horizon H . Let ēH be a modified energy profile defined by
some admissible permutation of eH . Intuitively, an admissi-
ble permutation is a modified energy profile that satisfies the
customer’s constraints on how energy can be shifted, for in-
stance not consuming below a customer’s minimum required
demand at any time, and shifting only portions of demand
that are flexible. The discomfort implied by an admissible
permutation ēH is quantified using a distance metric defined
on profile vectors: d (eH , ēH). Power TAC currently uses
the L2 distance metric d (eH , ēH) :=

∑
t=1:H (et − ēt)

2,
and we find that it has desirable strategic effects, which we
elaborate on later. Let cost (τ, ēH) be the cost paid by a
customer consuming energy according to ēH under a tar-
iff τ . Let w be a constant weighting the importance of cost
vs. discomfort. Then the customer’s utility of subscribing to
tariff τ and consuming according to ēH is ucust (τ, ēH) :=
− (cost (τ, ēH) + w × d (eH , ēH)).

Customers optimize ēH to maximize their utility under a
given tariff to which they are subscribed. This formulation
assumes a baseline maximum utility of 0 corresponding
to the customer using energy for free and consuming
according to its desired energy profile. For a customer cust
subscribed to a tariff τ , the optimal consumption profile
is e∗H := argmaxēH ucust (τ, ēH), and the utility of tariff
τ as (overloading notation) ucust (τ) := ucust (τ, e

∗
H).

For any fixed-rate tariff τfixed, all permutations have
the same price, so by the above definitions e∗H = eH ,
and ucust (τfixed) := −cost (τfixed, eH). Therefore,
for a given TOU tariff τtou and a fixed-rate tariff
τfixed, the utility of τtou for a customer cust is higher
than that of τfixed (i.e. ucust (τtou) > ucust (τfixed)),
when − (cost (τtou, e

∗
H) + w × d (eH , e∗H)) >

−cost (τfixed, eH), i.e. when when it saves enough
cost to overcome the extra discomfort.

4 Problem Formulation and Optimization
This section presents two of our main contributions: formal-
izing the TOU tariff optimization problem in competitive
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Figure 3: From left to right: (1) demand curve (2) unit-cost
curve (3) inverse-demand curve (4) overlaying (2) and (3).
The optimal selling-price p maximizes the rectangular area
(profit).

markets, and designing an algorithm for TOU optimization.

4.1 The TOU optimization problem

We frame the TOU optimization problem in terms of de-
mand and cost curves. For simplicity, we start by consider-
ing a broker who has published no tariffs, and who is about
to offer a candidate tariff τ with a single hourly-rate for a
single hour in the future, trying to optimize its selling-price
p. Let the demand curve of τ be the function D : R → R

that maps energy-selling prices to the resulting energy de-
mand from customers that will subscribe to τ . Typically,
D is a decreasing function of price, since the higher the
price, the lower the number of subscribers to τ as well as
their consumption. Let the unit-cost curve be the function
C : R → R that maps an energy amount to the unit-price
for which the broker is able to procure it in the wholesale
market. The energy unit-cost curve is typically an increasing
function, due to the increasing generation costs illustrated in
Figure 2. For a given selling price p, the profit, or utility,
of the broker is u(p) := D(p) × p − D(p) × C(D(p)) =
D(p)×(p−C(D(p)), as illustrated in Figure 3. The optimal,
profit-maximizing, selling price is

p∗ := argmax
p

u(p)) (1)

Next, we generalize this example to tariff optimization for
maximizing profit over some future horizon H . In this case
there are potentially different demand and cost curves Dt

and Ct for different future times t = +1, . . . ,+H (using the
notation ‘+i’ to denote ‘i timeslots into the future’). An opti-
mal, profit-maximizing tariff might need to specify a vector
of potentially different prices P := (p+1, . . . , p+H). This
can be implemented as a TOU tariff. The profit-maximizing
price vector is P ∗ := argmaxP

∑+H
t=+1 ut(Pt), where

ut(p) is defined similarly to u using Dt, Ct (Dt now de-
pends on all prices in P due to subscription and shift-
ing effects). In realistic scenarios, Dt and Ct are un-
known and so is ut, so an optimal price vector will be
the one maximizing the predicted expected utility P ∗ :=

argmaxP
∑+H

t=+1 E[ut(Pt)].
Finally, we generalize to the case where the optimizing

broker, as well as competing brokers, have possibly pub-
lished tariffs in the market, so that publishing a new tariff
may affect the demand for existing tariffs. Let T , T ′ be the
set of tariffs published by the optimizing broker and its op-
ponents, respectively. Let p(τ)t be the hourly rate of some tar-
iff τ for time t, let P (τ) := (p

(τ)
+1 , . . . , p

(τ)
+H), and let P(T ) :=

{P (τ)|τ ∈ T } the set of all vector prices of tariffs in the set
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T . Let D(τ)
t be the demand curve of τ at time t, given all

other tariffs published in the market. The cost curve is not
indexed by τ ; it is a function of the total energy bought by all
brokers. Using the notation P(T )

t to stand for prices offered
at time t by tariffs in a set T , the utility at time t now be-
comes u(T ,T ′)

t (P(T ∪T ′)
t ) =

(∑
τ∈T D

(τ)
t (P (τ))× p

(τ)
t

)
−(∑

τ∈T D
(τ)
t (P (τ))

)
× Ct(

∑
τ∈T ∪T ′ D

(τ)
t (P (τ))) where

the first term is income and the second term is costs (to-
tal demand times unit-cost). The utility of a candidate
TOU tariff τ over a horizon H becomes UH(P (τ)) :=∑+H

t=+1 E[u
(T ∪{τ},T ′)
t (P(T ∪{τ}∪T ′)

t )]. The TOU tariff op-
timization problem is defined in these terms as:

P ∗ := argmax
P

UH(P ) (2)

Note: this formulation can be extended with predicting
opponent responses to publishing a new tariff. Due to the
complexity of opponent modeling in our domain, we leave it
as an avenue for future work, and focus on designing a best-
response TOU optimization algorithm that approximates the
solution to Equation 2. Our implementation compensates for
the lack of opponent modeling by frequent replanning.

4.2 TOU Optimization Algorithm

Equation 2 provides a theoretical objective for solving an au-
tonomous broker’s TOU optimization problem. In practice,
there are at least two main obstacles to solving this equation.
First, future demand and cost-curves are typically unknown.
Second, even if they were known, they would have a com-
plex representation so that the optimal solution might not
have a closed form and would be hard to find. We start with
the second obstacle, assuming that the broker can predict the
future demand and cost curves, and then we describe how
curve predictions are implemented in our broker.

The second obstacle to coming up with a practical solu-
tion to Equation 2 is that of finding P ∗ in a non-convex,
H-dimensional space (typically H = 24): effects such as
subscription-changes and consumption-shifting create local
maxima and discontinuities in UH(P ), so that finding a
global optimum is generally intractable. Therefore, we re-
sort to finding a local optimum. In the simplified case of
Equation 1 (in which H = 1), p∗ may be approximated effi-
ciently using 1-dimensional search over prices. However, it
would be incorrect to apply such a method independently for
each i = +1, . . . ,+H for solving Equation 2. The reason
is that changing a single price p+i can create subscription-
changes and consumption-shifting that affect all demand-
curves in the horizon. In other words, hourly rates should
be optimized in conjunction. Several well-known local op-
timization methods (Amoeba, BOBYQA, Powell’s method)
failed to achieve reasonable performance when approximat-
ing the solution to Equation 2. Therefore, we designed the
following empirical gradient-based optimization algorithm
for efficiently finding a local optimum to Equation 2.

Our algorithm both builds upon, and generalizes a fixed-
rate tariff optimization algorithm proposed by (Urieli and
Stone 2014). Their algorithm optimizes fixed-rate tariffs,

and can be viewed as solving a limited version of Equa-
tion 2, using 1-dimensional search where P is only allowed
to have identical entries. Another simplification of their al-
gorithm compared to ours is that they estimated cost-curves
as average-price, flat curves, while we estimate curves more
accurately using online regression, since flat cost-curves
would not correctly reflect the need for TOU tariffs. Algo-
rithm 1 shows a pseudocode of our TOU optimization al-
gorithm, which has two phases. In a preliminary first phase
(line 1) it uses the fixed-rate optimization algorithm of Urieli
and Stone to get a reasonable fixed-rate seed for phase 2
(line 2-11). Phase 2 optimizes a TOU tariff using empirical
gradient-ascent. First, the fixed-rate seed is converted into
a TOU tariff with H identical entries (line 2). Next (lines
3-5), each of the entries is perturbed by ±ε and the util-
ity UH(P ) of the perturbed price vector is predicted using
the predicted demand and cost curves (in our experiments
ε = 0.5cents/kWh). Next, a 2-sided gradient is computed
from the 2H perturbations and is normalized to a length of
ε (line 6). Finally (lines 7-11), starting with the fixed-rate
seed, the algorithm repeatedly takes steps in the direction
of the gradient, as long as it has computation time and has
not reached a local maximum. It returns the TOU tariff with
the maximum predicted utility. To compensate for the lack
of opponent modeling, Algorithm 1 is executed frequently
by our broker, and thus responds to opponent actions. In our
experiments, Algorithm 1 outperformed optimization algo-
rithms like BOBYQA, Amoeba, and Powell’s (these results
were left out due to space constraints).

Algorithm 1 Gradient-Based TOU Tariff Optimization
1: fixedRateSeed ← FindBestFixedRateTariff()
2: 〈p, p, · · · , p〉 ← ConvertToTOUTariff(fixedRateSeed) //vector of length H

3: for i in 1, . . . , H do

4: u+
i ← PredictUtility(〈p, .., p, p + ε, p, .., p〉) //ε added to i’th entry

5: u−
i ← PredictUtility(〈p, .., p, p − ε, p, .., p〉) //ε subtracted from i’th entry

6: 〈ε1, ε2, .., εH〉 ← NormalizeGradient(〈u
+
1 −u

−
1

2 ,
u
+
2 −u

−
2

2 , ..,
u
+
H

−u
−
H

2 〉)
7: P ← 〈p, p, · · · , p〉; currentUtility ← PredictUtility(P ); prev ← null
8: while hasTime and notConverged(currentUtility, prev) do

9: P ← P + 〈ε1, ε2, · · · , εH〉
10: prev ← currentUtility; currentUtility ← PredictUtility(P );
11: return P with highest utility

Back to the first obstacle, a broker agent needs to pre-
dict the future demand and cost curves D+1, . . . , D+H and
C+1, . . . , C+H . Our broker learns the cost curves C+i from
past data and adapts its predictions while trading as follows.
First, it makes a simplifying assumption, that C+1 = C+i

for i = 1, . . . , H . Second, it uses L2 regularized linear
regression to create an initial curve estimation from past
wholesale trading data. Third, at trading time our broker
continually monitors its past prediction errors and adds a
correction factor to future predictions, which is the average
prediction error in the last 24 hours. This reduces the bias in
future cost-curve predictions.
D+i is determined by the combined effect of the three

customer-behaviors of subscription-changes, consumption-
elasticity and consumption-shifting, described in Section 3.
Demand curve prediction can now be broken into three sim-
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Table 1: FixedRate, TOUNaive and TOU playing against
AgentUDE (top table) and CWIBroker (bottom table).

(a) Fixed-Rate-vs-UDE (b) TOUNaive-vs-UDE (c) TOU-vs-UDE Change (c)/(a)
score: our-agent (M$) 1.893 1.689 1.922 1.016 (+1.6%)
score: UDE (M$) 0.895 0.578 1.122 1.253 (+25.3%)
market-share: our-agent (%) 64.0 73.3 61.4 0.959 (-4.1%)
(our) avg energy-buy price 0.053 0.051 0.051 0.963 (-3.7%)
(our) avg energy-sell price 0.105 0.098 0.105 1.000 (-0.0%)
(all) avg energy-buy price 0.051 0.049 0.049 0.961 (-3.9%)
(all) avg energy-sell price 0.105 0.099 0.104 0.990 (-1.0%)
peak-demand (MW) 86.771 71.882 73.519 0.847 (-15.3%)

(a) Fixed-Rate-vs-CWI (b) TOUNaive-vs-CWI (c) TOU-vs-CWI Change: (c)/(a)
score: our-agent (M$) 0.677 0.524 0.622 0.919 (-8.1%)
score: CWI (M$) 0.771 0.620 0.558 0.724 (-27.6%)
market-share: our-agent (%) 44.2 54.3 54.7 1.238 (+23.8%)
(our) avg energy-buy price 0.057 0.054 0.054 0.947 (-5.3%)
(our) avg energy-sell price 0.095 0.087 0.086 0.905 (-9.5%)
(all) avg energy-buy price 0.057 0.055 0.053 0.930 (-7.0%)
(all) avg energy-sell price 0.094 0.086 0.086 0.915 (-8.5%)
peak-demand (MW) 86.701 74.720 73.651 0.849 (-15.1%)

Table 2: Self-play of TOU, compared with TOU playing
against AgentUDE, and against CWIBroker.

(d) TOU-vs-TOU Change (d)/(c) (UDE) Change (d)/(c) (CWI)
score: our-agent (M$) 0.493 0.257 (-74.3%) 0.791 (-20.9%)
score: agent-copy (M$) 0.482 – –
market-share: our-agent (%) 50.5 0.823 (-17.7%) 0.927 (-7.3%)
(our) avg energy-buy price 0.051 1.000 (-0.0%) 0.944 (-5.6%)
(our) avg energy-sell price 0.083 0.790 (-21.0%) 0.954 (-4.6%)
(all) avg energy-buy price 0.051 1.041 (+4.1%) 0.944 (-5.6%)
(all) avg energy-sell price 0.083 0.798 (-20.2%) 0.954 (-4.6%)
peak-demand (MW) 70.101 0.954 (-4.6%) 0.947 (-5.3%)

pler (though still complex) prediction problems. If needed,
each one of these behaviors could be learned from past data.
In our case, in contrast to cost-curve which must be learned
online (since they depend on competitor behaviors), the
demand-curves are determined by stochastic models inside
the simulator. Therefore, in this paper we equip the broker
with the simulator’s models of customer behaviors (though
it still needs to estimate the models’ parameters since they
are drawn from a distribution at run time, and not reported to
the broker; it does so by setting the parameters to their mean
values). In the results section we ablate predictions modules
and test their impact on performance.

5 Experimental Results

We evaluated our TOU broker using paired tests. We mea-
sured the impact of modifying a component of the broker
by testing the original and the modified version in a set of
games, in which the opponents and most random factors in
the simulation were held fixed (random seeds, weather con-
ditions). Paired testing improves our ability to evaluate the
statistical significance of the results, by allowing us to use
the Wilcoxon matched-pairs signed-ranks test instead of an
unpaired test. To fix weather conditions, we used weather
files containing 3 months of real-world weather. To cover
year-round weather conditions we used 8 weather files (each
file used by 1/8 of the games) with start-dates of January,
April, July, October of 2009 and 2010. Opponents were fixed
to be one of the top brokers played in the Power TAC 2014
finals: AgentUDE (Ozdemir and Unland 2015) (1st place),
and CWIBroker (Hoogland and Poutre 2015) (2nd place).

5.1 Impact of Gradient-Based TOU on Broker’s
Performance and on the Economy

We tested how using TOU tariffs optimized with Algo-
rithm 1 affected 1) the broker’s performance, and 2) the
economy. We compared a TOU Broker using Algorithm 1

with two variations: one that uses fixed-rate tariffs and an-
other that uses a naive TOU tariff optimization. We re-
fer to these brokers as TOU, FixedRate, and TOUNaive.
FixedRate was created from TOU by disabling phase 2
of Algorithm 1, and using the fixed-rate tariff returned by
phase 1 (line 1). TOUNaive was created from TOU as fol-
lows. Phase 2 of Algorithm 1 was replaced with a phase that
naively assigns higher rates to hours with higher predicted
costs, by adding a fixed margin to these predicted costs.
Specifically, given a fixed-rate tariff with rate p returned by
phase 1, and given a predicted cost vector (c+1, . . . , c+H),
the naive algorithm computes an average margin m :=
1
H

∑+H
i=+1(p− ci), and publishes a TOU tariff with the price

vector P = (c+1 +m, ..., c+H +m). All other broker com-
ponents remained identical between the three brokers. We
compared these three brokers in 2 different experiments, in
which they played 200 games against (1) AgentUDE, and
(2) CWIBroker, both of which use only fixed-rate tariffs.

Table 1 shows the results of these two experiments.
Each row shows a measured quantity averaged over games
played by FixedRate, TOUNaive and TOU, as well as the
relative change in this quantity when using TOU instead
of FixedRate. All results are statistically significant with
p = 0.01 (many with p � 0.01), using the Wilcoxon
matched-pairs signed-ranks test. TOU was the only agent
that earned a higher score than both competitors (by 9% and
70% gaps against CWIBroker and AgentUDE respectively).
TOUNaive was dominated by TOU in the sense that it made
less profit against both opponents, and lost to CWIBroker.

Compared with FixedRate, TOU either earned more
profit (against AgentUDE), or increased its profit-share from
losing to winning (against CWIBroker, although with lower
profit), while reducing peak demand by around 15%. TOU’s
peak reduction reduced the energy costs for both brokers and
customers (including competitors’), and therefore increased
social welfare. The surplus resulting from peak-reduction
benefited either brokers or customers, depending on broker
strategies. When playing against CWIBroker, customers en-
joyed an 9.5% cost reduction, and brokers’ suffered profit re-
duction, due to a fierce price-reduction competition. On the
other hand, when playing against AgentUDE, brokers did
not reduce prices as much; customers’ cost reduction was
only 1%, while brokers’ profits increased. Since our bro-
ker plays a best-response strategy, the difference depends on
how cooperative the other broker is.

Table 2 shows the results of running TOU against itself.
It achieved the best flattening (around 20% peak reduction
compared with FixedRate), and the lowest price for cus-
tomers (around 5%-20% savings compared with when TOU
played against AgentUDE, CWIBroker). However, in this
case TOU achieved the lowest profit of all brokers due to
a fierce price-reduction competition. TOU’s best-response
self-play benefited customers but not the broker. This illus-
trates game-theoretic issues pointed out by (Liefers, Hoog-
land, and Poutre 2014), whereby cooperative brokers could
make higher profits, in this case by enjoying more of the sur-
plus created by peak-reduction, at the expense of customers.

Figure 4 shows how the market power of a TOU broker
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(a) Total consumption over 24 hours.

(b) Per-broker consumption over 24 hours.

(c) Active tariffs over 24 hours.

Figure 4: Consumption flattening: FixedRate (left column),
TOUNaive (middle), TOU (right).

Table 3: Ablation analysis: erratic-predictions

TOU NoShift FlatCost
score: our-agent (M$) 0.622 0.507 -0.007
score: CWI (M$) 0.558 0.550 0.210
peak-demand (MW) 73.651 83.728 82.779

affects its ability to flatten demand. All plots show con-
sumption over 24 simulated hours. The left, middle, right
columns show FixedRate, TOUNaive and TOU playing
against CWIBroker. Peak demand is around 90MW, 80MW,
and 70MW respectively (top row). TOU’s large market
share allowed it to counter-balance CWIBroker’s customers’
peaked-demand, while TOUNaive was only partially suc-
cessful in doing so due to both lower market share (middle
row), and suboptimal TOU pricing (bottom row).

TOU’s frequent replanning using Algorithm 1 prevented
customer herding (many customers shifting consumption to
lowest-price times, causing a new peak (Ramchurn et al.
2011)). Even though we disabled customer-components for
addressing herding (bundle-based optimization and stochas-
tic shifting (Reddy and Veloso 2012)) and let customers
shift greedily to their utility-maximizing energy profile, no
herding was observed, due to a combination of (1) a TOU
broker that implicitly coordinated flattening through profit-
maximizing tariffs (Figure 4c, right), with (2) a smooth dis-
comfort metric dist (eH , e∗H). This underlines a potential
benefit of employing TOU brokers in competitive markets.

5.2 Robustness of TOU to Prediction Errors

We tested the robustness of TOU to errors in its
consumption-shifting predictions. Table 3 compares profits
and peak-demand when testing 2 variations of TOU against
CWIBroker. We chose CWIBroker as an opponent against
which TOU had smaller profit margins (see Table 1), so ac-
curate predictions seemed important. The left column shows

the results of TOU, copied from Table 1, as a reference.
The NoShift broker was created from TOU by disabling the
consumption-shifting prediction module, and the FlatCost
broker was created by adding noise to cost-prediction, mak-
ing it predict a flatter cost-curve slope. Based on Table 3,
both the consumption-shifting and cost prediction modules
are critical for both profit and peak-flattening: without them
TOU lost and peak-demand was barely reduced.

6 Related Work

DSM is viewed as an important component of future smart-
grids. (Palensky and Dietrich 2011) provides a taxonomy
for DSM. Existing work on TOU tariffs either has not con-
sidered competitive retail markets or has used more ab-
stract, smaller-scale simulations (Yang, Tang, and Nehorai
2013; Wu, Wang, and Cheng 2004; Celebi and Fuller 2007;
Datchanamoorthy et al. 2011; Veit et al. 2014; Albadi and
El-Saadany 2008; Triki and Violi 2009; Yousefi, Moghad-
dam, and Majd 2011). To the best of our knowledge, this
paper is the first to investigate the usage of TOU tar-
iffs by autonomous brokers in a large-scale, detailed, re-
alistic simulation of competitive power markets with au-
tonomous customer agents. Recent work on Power TAC
agents used fixed-rate tariffs (Ozdemir and Unland 2015;
Hoogland and Poutre 2015; Urieli and Stone 2014; Liefers,
Hoogland, and Poutre 2014; Babic and Podobnik 2014;
Kuate, Chli, and Wang 2014; Kuate et al. 2013), except
one (Ntagka, Chrysopoulos, and Mitkas 2014) who reports
using TOU tariffs with 2 or 3 daily rates, however at that
time Power TAC included only non-shifting customers, so
that the impact of TOU tariffs in presence of demand-
shifting customers could not be tested. In prior trading agent
competitions, utility-optimization approaches were used in
different domains (Pardoe 2011; Stone et al. 2003).

7 Conclusion

We formalized the problem of TOU tariff optimization
in competitive retail markets, and proposed a real-time
gradient-based, utility-optimization (profit-maximization)
algorithm that approximates its solution. Our algorithm is
fully implemented and tested extensively in the Power TAC
simulator. Our gradient algorithm is currently the only TOU
algorithm that performs robustly in Power TAC’s complex,
realistic environment: both a naive approach (TOUNaive)
and well-known optimization algorithms failed to outper-
form fixed-rate brokers. We have shown that TOU tariffs
can compete successfully with fixed-rate tariffs: our TOU
agent outperformed the top 2 agents of the Power TAC 2014
finals, reduced peak-demand by 15% compared with using
only fixed-rate tariffs, increased its profit and/or profit-share,
and saved costs for all customers (including competitors’).
Our ablation analysis showed the importance of having ac-
curate customer-shifting and cost-curve predictions.

While TOU tariffs can induce customer-herding, our TOU
broker prevented it by implicitly coordinating flattening
through profit-maximizing tariffs. This underlines a poten-
tial benefit of employing autonomous TOU brokers in com-
petitive power markets. In addition, we have seen that a TOU
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broker’s customer share is an important factor in its abil-
ity to flatten demand: to counter-balance peaked consump-
tion of fixed-rate brokers’ customers, it needs to gain large
customer-share by creating attractive TOU tariffs that are
still profitable. Finally, our experiments demonstrated game-
theoretic issues that affect the distribution of surplus created
by reduced costs. An important direction for future work is
exploring the market efficiency when many agents are com-
peting against each other.
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